

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): 志县	DATE: (日期):2018-03-15
CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GY 100V47μF(φ8X12)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
杜焕	刘渭清		

ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES

		SPECIFICAT	ALTERNATION HISTORY RECORDS				
Rev.	Date	GY SERIE Mark	ES Page	Contents	Purpose	Drafter	Approver
ICCV.	Date	IviaiK	1 uge	contents	1 dipose	Dianci	

	MAN YUE ELECTR COMPANY LIMI		5	ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES						S	AMX	ON		
Tabl		sions a	und Ch	aracteristic	? S						Unit: n	ım		
	Safety vent for $\geq \Phi$ 6.3		5 min	$\downarrow \phi d \pm 0.05$	5		F±0.5	β ⊄ * If it is	20:α=1.5; L pD<20:β=0. flat rubber, urface.	5; ΦD≥20	: β=1.0	from th	ie flat i	ubber
N 0.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Impedance at 20°C 100kHz (Ωmax)	Load lifetime (Hrs)	Din D×L	mension (mm) F	n фd	- Sleev e
								()						

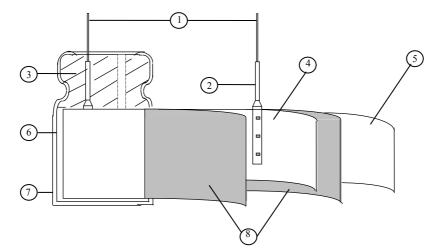
Version	01	Page	2
		U	

 Application Part Number System Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tan δ Terminal strength Temperature characteristic Load life test 	Sheet 4 5 5~10
 Part Number System Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tan δ Terminal strength Temperature characteristic 	5
 Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tan δ Terminal strength Temperature characteristic 	
 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 	5~10
 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 	5~10
 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 	
 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 	
4.5 Terminal strength4.6 Temperature characteristic	
4.6 Temperature characteristic	
-	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
4.16 Maximum permissible (ripple current)5. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15

Version 01	Page 3
------------	--------

ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES

EGS 10.5 M 11H D11 TC SAM_CON PRODUCT 11NE BLEEV Series 0.1 104 15.5 J 2.6 0.05 PRODUCT 11NE BLEEV Series 0.1 104 15.5 J 2.6 0.05 PRODUCT 11NE BLEEV Series 0.22 22.4 10 K 63 0.6 10 Product 11NE BLEEV Series 0.22 22.4 10 K 63 0.6 10 Product 11NE BLEEV Series 0.22 22.4 10 K 63 0.6 10 Product 11NE BLEEV Series 0.22 22.4 22.6 M 2.0 MD	_	Part	Numb	er S	<u> </u>	_		Γ	10111	D 4.94	14	1516 17
SERIES CARACTIANCE TOL VOLTAGE CASE SIZE TYPE PROMUME SLEEN Series CaptMED Code Tolerance (%) Tolerance (%) Code Tolerance (%) Code Tolerance (%) Code Tolerance (%) Code Tolerance (%) Tolerance (%) Tolerance (%) Code Tolerance (%) Tolerance (%)	Ļ			56		_	89	L		지 [13]		
Series Cap(MED) Code Foliarance (%) Code Voltace (MXC) Code Code Voltace (MXC) Code Code <thcode< th=""> <thcode< th=""> Code</thcode<></thcode<>				0 3		-	<u>1 H</u>		<u>D 1</u>			SA P
		BERIES	UAFA			_ .	VOLIAGE			- ï		
	Π	Series	Cap(MFD)	Code	Tolerance (%)	Code	Voltage (W.V.)	Code	Case Siz	e Feature	Code	SAMXON Product Line
Exs. 0.22 224 22 20 33 1 1 Arron Taping 2 1 <th1< th=""></th1<>		ESM EKF					2	0D	Diameter(Radiai bulk		For internal use only
EXM 0.33 334 210 K C <thc< th=""> C C C</thc<>		EKS	0.22	224			4	0G	3.5 1 4 C	Ammo Tap	xing	
EXAMP 0.47 474 ±15 L 10 1A TO C <thc< th=""> C C</thc<>		EKM			±10	к			6.3 E			E,M or 0,1,2,3,4,5,9).
ESP ECT 0.3/ 1/4/ 1/6 1/2 1		EOM	0.33	334	±15	L	10	1A	10 G		$\left \right $	
EGAT EGAT EGAT EGAT EGAT EGAT EGAT EGAT		EGF	0.47	474			16	1C	13.5 V		TU	
ÉGO EGO EGO EGO EGO EGO EGO EGO EGO EGO E		EGT	1	105	±20	м			14.5 A	13.5mm Pitch	TV	Sleeve Material Code
ERR. ERR. ERR. ERR. ERR. ERR. ERR. ERR.		EGE	2.2	225	±30	N	30	11	18 1		тс	PET P
ERR. ERR. ERR. ERR. ERR. ERR. ERR. ERR.		ERS	3.3	335	-40	10/	35	1V	18.5 E	Lead Cut &	Form	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ERL	47	475	0	~~			22 N 25 C 30 F	СВ-Туре	СВ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ERT		-	-20	A			34 W 35 C	CE-Type	CE	
PRA 222 228 77 11 13 51 5 7 615 7 625 7 77 11 635 7 77 11 635 7 77 11 635 7 77 11 635 1 77 11 635 1 77 11 635 1 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 77 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75 11 75		ERD ERH	10		-20 +10	с	63	1J	40 F 42 4	HE-Tupo	$\left - \right $	
BROC 33 336 +40 X 80 1K 76 U RD-1ype RD EFA 47 478 -200 S 85 1R 80.8 1R 80.8 1R 100 126 200 X 100 107 -10 B 120 220 227 -10 R 122 228 7.7 77		ERA	22	226		~			51 S 63.5 T	. 11	\vdash	
ENP ERW 47 476 +200 +200 S 300 100 120 220 FD-Type FD ERW 100 107 -10 B 120 220 EH-Type EH EADP 220 227 -10 V 150 220 54 55 56 56 56 52 52 52 52 52 52 52 52 56		ERC	33	336			80		76 U 80 8	КД-Туре	KD	
ERV 100 107 -10 B 100 2A 4.5 45 60 EH-Type EH ECP 220 227 -10 V 150 22 5.4 56 54 54 54 56 52 10		ENP	47	476	-20 +50	s	90	19	90 X 100 Z	FD-Type	FD	
Exp EOP EOP EOP EXP EXP EXP EXP EXP EXP EXP EXP EXP EX		ERY	100	107	-10	в			4.5 4	5 EH-Type	EH	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EAP	220	227	-10	v			5.4 5	PCB Tem	nial	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EDP					160	2C	10.2 T	2	sw	
if is		EUP			+30	Q			11.5 1/		sx	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EEP	470	477		T			13 1:	3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ESP	2200	228	-5	E	230	23	20 20	Í	\vdash	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EWR	22000	229		E			30 30	□	SG	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EWT	33000	339			300		31.5 3/ 35 3	5	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EWF	47000	479		G	315	2F	35.5 3E 50 50 80 80		O 6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		EWL				R			100 11 105 11		т5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VSS				0			110 1N 120 1N	Screw	тө	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		VKS VKM	150000	15T		1	385	2Y	140 110	211	\vdash	
3300000 33M		VRL	220000	227	+5	z					\vdash	
2200000 2211 3300000 33M	l		330000	33Т					165 11 170 1		D6	
3300000 33M			1000000	10M			550	25	190 1\ 200 2			
3300000 33M			1500000	15M	+50	Y			215 2/ 210 2M	1		
3300000 33M						н			220 2h 240 20	2		
	L		3300000	33M								


Version	01		Page	4
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	: 20°C ± 2°C
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Ρασρ	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES

Tabl	ITEM				DEDEO	RMANC	٦٢			
					PEKFU	NIVIAN	L.E.			
	Rated voltage			1				1	1	1
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)									
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requency oltage emperat	: N ure : 20)±2℃	han 0.5V				
4.3	Leakage current	Condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria>	he capao then, me		-		istor (1	kΩ±10	Ω) in s	eries for
4.4	tan δ	<condition> See 4.2, Nor <criteria> Refer to Tabl</criteria></condition>	n Capac	itance, fo	or measur	ing frequ	iency, vo	ltage and	l tempera	iture.
		Condition> Tensile Str Fixed the or seconds. Bending St Fixed the ca 90° within a seconds.	ength of capacitor rength of pacitor, 2~3 seco	, applied Termina applied f onds, and	force to ils. orce to b then ber	ent the te	rminal (1 0° to its	l∼4 mm f	from the position	rubber) fo
4.5	Terminal	Diame	er of lea	d wire		(kgf)		Bending (kg		
4.3	strength	0.51	nm and I	less		5 (0.51)		2.5 (
		Over 0.	5mm to	0.8mm	1	0 (1.0)		5 (0	.51)	
		<criteri< b=""> No notic</criteri<>		nanges sh	all be fou	ınd, no b	reakage	or loosen	ess at the	e terminal

Version	01	Page	6

		STEP	Testi	ng Tempe	erature(°C)			Time		
		1	-	20 ± 2			to reach	thermal of	equilibri	um
		2	_	-40(-25)			to reach		•	
		3		20 ± 2			to reach		1	
		4		$105\pm$			to reach			
		5		20 ± 2			to reach		<u>.</u>	
		<criteria></criteria>							- 1	
		a. tan δ shal more than 8 t	times of i	its specifie	ed value.		-			
	Temperature characteristi	b. In step 5,			hin the lin	nit of Iter	n 4.4The	leakage	current	shall no
4.6	characteristi	more than the	-							
ч.0	65	c. At-40℃ (-25°C), ii	mpedance	e (z) ratio s	shall not	exceed th	e value o	of the fol	lowing
		table.		()	10	16	25	25	50	(2)
		Working Volt	- · ·	6.3	10	16	25	35	50	63
		Z-25°C/Z+		4	3	2	2	2	2	2
		Z-40°C/Z+	20 C	8	6	4	3	3	3	3
		Working Volta	age (V)	100]					
		Z-25°C/Z+2	20°C	2						
		Z-40°C/Z+2	20°C	3						
		For capacitan	ice value	> 1000 µ	E Add 0	5 nor ono	thar 1000) IL E for	7 25/71	20°
		1 of oupdomain		- 1000 M	r, Auu 0	s per ano	uler 1000		L - 2J/L +	20 C,
		-			Add 1.0) per anot	her 1000	μ F for 2		
		Capacitance, t			Add 1.0) per anot	her 1000	μ F for 2		
		-	$\tan\delta$, and		Add 1.0) per anot	her 1000	μ F for 2		
		Capacitance, t <condition> According to</condition>	tan ⁸ , and IEC6038	d impedar 84-4No.4.	Add 1.0 nce shall b 13 method) per anot e measur ls, The ca	her 1000 ed at 120 pacitor is	μ F for 2 Hz.	Z-40°C/Z	Z+20°C.
		Capacitance, t <condition> According to 105°C ±2 with the second seco</condition>	tan δ, and IEC6038 ith DC bi	d impedar 84-4No.4.	Add 1.0 nce shall b 13 method e plus the r) per anot e measur ls, The ca	her 1000 ed at 120 pacitor is le current	μ F for 2 Hz. s stored a t for Tab	Z-40°C/Z at a temp ble 1. (T	$Z+20^{\circ}C$. erature of the sum of
		Capacitance, t <condition> According to 105°C ±2 wi DC and ripp</condition>	tan δ, and IEC6038 ith DC bi le peak v	d impedar 84-4No.4. ias voltage voltage sł	Add 1.0 nce shall b 13 method e plus the r nall not ex) per anot e measur ls, The ca rated ripp kceed the	her 1000 ed at 120 pacitor is le current e rated w	μ F for Hz. s stored æ t for Tab yorking	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature c he sum c Then th
		Capacitance, t <condition> According to 105°C ±2 wi DC and ripp product shoul</condition>	tan ⁸ , and IEC6038 ith DC bi le peak v ld be teste	d impedar 84-4No.4. ias voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec) per anot e measur ls, The ca rated ripp kceed the	her 1000 ed at 120 pacitor is le current e rated w	μ F for Hz. s stored æ t for Tab yorking	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature c he sum c Then th
47	Load	Capacitance, t <condition> According to 105°C ±2 wi DC and ripp product should result should</condition>	tan ⁸ , and IEC6038 ith DC bi le peak v ld be teste	d impedar 84-4No.4. ias voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec) per anot e measur ls, The ca rated ripp kceed the	her 1000 ed at 120 pacitor is le current e rated w	μ F for Hz. s stored æ t for Tab yorking	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature c he sum c Then th
4.7	life	Capacitance, t <condition> According to 105°C ±2 wi DC and ripp product shoul</condition>	$an \delta$, and IEC6038 ith DC bi le peak v ld be testo meet the	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table:	b per anot e measur ls, The ca rated ripp acceed the covering	her 1000 ed at 120 pacitor is le current e rated w time at at	μ F for Hz. s stored æ t for Tab yorking	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature c he sum c Then th
4.7		Capacitance, t <condition> According to 105°C ±2 wi DC and ripp product should <criteria> The characte</criteria></condition>	$an \delta$, and IEC6038 ith DC bi le peak v ld be testo meet the	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following ill meet th	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table:	b per anot e measur ls, The ca rated ripp acceed the covering g require	her 1000 ed at 120 pacitor is le current e rated w time at at ments.	μ F for Hz. s stored a t for Tab vorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature c he sum c Then th
4.7	life	Capacitance, t <Condition> According to $105^{\circ}C \pm 2 \text{ with}$ DC and ripp product should result should <Criteria> The character Leakage	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the <u>pristic sha</u>	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following ill meet th nt	Add 1.0 nee shall b 13 method e plus the r nall not ex 6 hours red g table: e followin	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u>	her 1000 ed at 120 pacitor is le current e rated w time at at <u>ments.</u> be satisfi	μ F for Z Hz. s stored a t for Tab rorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature c he sum c Then th
4.7	life	Capacitance, t <Condition> According to $105^{\circ}C \pm 2 \text{ with}$ DC and ripp product should result should <Criteria> The character Leakage	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the <u>eristic sha</u> ge curren	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours rec g table: <u>e followin</u> Value in	b per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>225% of</u>	her 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va	μ F for Z Hz. s stored a t for Tab vorking v mospher ded ilue.	Z-40°C/Z at a temp ble 1. (Ti voltage) ic condit	Z+20°C. erature c he sum c Then th
4.7	life	Capacitance, t <condition> According to 105°C ±2 wi DC and ripp product should result should <criteria> The characte Leakag Capac</criteria></condition>	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the eristic sha ge curren itance Ch	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u>	b per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> e than 200	her 1000 ed at 120 pacitor is le current rated w time at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ded ilue.	Z-40°C/Z at a temp ble 1. (Tr voltage) ic condit	Z+20°C. erature c he sum c Then th
4.7	life	Capacitance, t <condition> According to $105^{\circ}C \pm 2 \text{ with}$ DC and ripp product should result should <criteria> The character Leakaş Capac tan δ Appea</criteria></condition>	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the pristic sha ge curren itance Ch	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following ill meet th nt	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more	b per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> e than 200	her 1000 ed at 120 pacitor is le current rated w time at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ded ilue.	Z-40°C/Z at a temp ble 1. (Tr voltage) ic condit	Z+20°C. erature c he sum c Then th
4.7	life	Capacitance, t According to $105^{\circ}C \pm 2 \text{ with}$ DC and ripping product should content of the character of th	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the eristic sha ge curren itance Ch arance	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following Ill meet th nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>1</u> Not more There sha	b per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> <u>all be no</u>	her 1000 ed at 120 pacitor is le current rated w time at at ments. be satisfi initial va leakage c	μ F for Z Hz. s stored a t for Tab rorking v mospher ded ilue. specifie	Z-40°C/Z at a temp ble 1. (Tr voltage) ic condit ed value.	Z+20°C. erature of the sum of Then th tions. Th
4.7	life	Capacitance, t <	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the ristic sha ge curren itance Ch mance	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following Ill meet th tt nange	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within <u>+</u> Not more There sha	b per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> <u>all be no</u>	her 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a ter	μ F for Z Hz. s stored a t for Tab rorking v mospher ded <u>lue.</u> specifie of electro	Z-40°C/Z at a temp ble 1. (Tr voltage) ic condit ed value. blyte. re of 105	$\pm 2^{\circ}C$. erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for
4.7	life	Capacitance, t <condition> According to $105^{\circ}C \pm 2 \text{ with}$ DC and ripp product should <criteria> The character Leakag Capace tan δ Appear <condition> The capacitors 1000+48/0 ho</condition></criteria></condition>	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the <u>rristic sha</u> ge curren itance Ch urance	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following ill meet th nange	Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>1</u> Not more There sha th no volta	b per anot e measur els, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> all be no	her 1000 ed at 120 pacitor is le current e rated w time at at <u>ments.</u> be satisfi initial va 0% of the leakage c	μ F for Z Hz. s stored a t for Tab rorking v mospher ded due. specific of electro mperatur l be remo	Z-40°C/Z at a temp ole 1. (Tr voltage) tic condit	$\pm 2^{\circ}C$. erature of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the term
4.7	life test	Capacitance, t Condition> According to $105^{\circ}C \pm 2 \text{ wi}$ DC and ripp product should 	$an \delta$, and IEC6038 ith DC bi le peak v ld be teste meet the <u>ristic sha</u> ge curren itance Ch arance	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following Ill meet th nange stored wi lowing thi ved to stal	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>1</u> Not more There sha th no volta is period t	b per anot e measur e measur ls, The ca rated ripp ceed the covering g require 4.3 shall 25% of e than 200 all be no age applic he capaci	her 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c ed at a ten tors shall pperature	μ F for 2 Hz. s stored a t for Tab rorking v mospher ed ilue. specifie of electro mperatur l be remo	Z-40°C/Z at a temp ole 1. (Ti voltage) ic condit ed value. olyte. re of 105 oved from a hours. 1	$\pm 2^{\circ}C$ for the sum of the sum of then the tions. The $\pm 2^{\circ}C$ for m the ter Next the
	life test Shelf	Capacitance, t <condition> According to $105^{\circ}C \pm 2$ w DC and ripp product should <criteria> The characte Leakag Capac tan δ Appea <condition> The capacitors 1000+48/0 ho chamber and shall be conr</condition></criteria></condition>	$an \delta$, and IEC6038 ith DC bi le peak of ld be teste meet the eristic sha ge curren itance Ch mance	d impedar 34-4No.4. ias voltage sh ed after 16 following ill meet th it nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha is period t bilized at limiting re	b per anot e measur e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c25% of</u> e than 200 all be no all be no mage applic he capaci room ten esistor(11	ther 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c ed at a ten tors shall pperature $\pm 100 \Omega$	μ F for Z Hz. s stored a t for Tab vorking v mospher ded ilue. specifie of electro be remained for 4~8) with I	z-40°C/z at a temp ble 1. (Ti voltage) ic condit ed value. blyte. re of 105 oved from blours. 1 D.C. rate	erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the tea Next the d voltag
4.7	life test	Capacitance, t Condition> According to $105^{\circ}C \pm 2 \text{ wi}$ DC and ripp product should 	$an \delta$, and IEC6038 ith DC bi- le peak v ld be teste meet the ristic sha ge curren itance Ch- vance	d impedar 34-4No.4. ias voltage sh ed after 16 following ill meet th it nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha is period t bilized at limiting re	b per anot e measur e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c25% of</u> e than 200 all be no all be no mage applic he capaci room ten esistor(11	ther 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c ed at a ten tors shall pperature $\pm 100 \Omega$	μ F for Z Hz. s stored a t for Tab vorking v mospher ded ilue. specifie of electro be remained for 4~8) with I	z-40°C/z at a temp ble 1. (Ti voltage) ic condit ed value. blyte. re of 105 oved from blours. 1 D.C. rate	erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the tea Next the d voltag
	life test Shelf life	Capacitance, t Condition> According to $105^{\circ}C \pm 2$ with DC and ripping product should result should content of the character of the	$an \delta$, and IEC6038 ith DC bi- le peak v ld be teste meet the ristic sha ge curren itance Ch- vance	d impedar 34-4No.4. ias voltage sh ed after 16 following ill meet th it nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha is period t bilized at limiting re	b per anot e measur e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c25% of</u> e than 200 all be no all be no mage applic he capaci room ten esistor(11	ther 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c ed at a ten tors shall pperature $\pm 100 \Omega$	μ F for Z Hz. s stored a t for Tab vorking v mospher ded ilue. specifie of electro be remained for 4~8) with I	z-40°C/z at a temp ble 1. (Ti voltage) ic condit ed value. blyte. re of 105 oved from blours. 1 D.C. rate	erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the tea Next the d voltag

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet the	ne following requirements.
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life	$\tan \delta$	Not more than 200% of the specified value.
	test		There shall be no leakage of electrolyte.
		Appearance Remark: If the connectors are s	tored more than 1 year, the leakage current may
			through about 1 k Ω resistor, if necessary.
		<pre><condition></condition></pre>	unough usout i Refreshort, if neocostary.
			capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor.
			ed to 1000 cycles, each consisting of charge of $30 \pm 5s$,
		followed discharge of 5 min 3	
		The test temperature shall be	
		C _R :Nominal Capacitance (µ	
	~	<criteria></criteria>	
4.9	Surge	Leakage current	Not more than the specified value.
	test	Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	
		This test simulates over voltag	e at abnormal situation only. It is not applicable to such
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency ran Peak to peak amplitude Sweep rate Mounting method:	

Version	01		8
		0	

ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES

4.11	Solderability test	<condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245±3°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s <criteria> A minimum of 95% of the surface being immersed <</criteria></condition>
4.12	Resistance to solder heat test	Terminals of the capacitor shall be immersed into solder bath at $260 \pm 5^{\circ}$ C for $10 \pm 18^{\circ}$ lseconds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for $1 \sim 2$ hours before measurement. Criteria> Leakage current Not more than the specified value. Capacitance Change Within $\pm 10\%$ of initial value. tan δ Not more than the specified value. Appearance There shall be no leakage of electrolyte.
4.13	Change of temperature test	<condition>Temperature Cycle:According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:</condition>
4.14	Damp heat test	<condition> Humidity Test: According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 500 ± 8 hours in an atmosphere of $90 \sim 95\%$R H .at 40 ± 2°C, the characteristic change shall meet the following requirement.<criteria>Leakage currentNot more than the specified value. Capacitance Change Within $\pm 20\%$ of initial value. tan δ Not more than 120% of the specified value. Appearance</criteria></condition>

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GY SERIES

4.15	Vent test	<condition> The following test only apply to those products with vent products at diameter $\ge \emptyset 6.3$ with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from below table is applied. <table 3=""> Diameter (mm) DC Current (A) 22.4 or less 1 Over 22.4 10 Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</table></condition>
4.16	Maximum permissible (ripple current)	Condition> The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: <u>Coefficient</u> <u>Freq.</u> <u>120</u> <u>300</u> <u>1K</u> <u>100k</u>

Version 01 Page 10	Version	
--------------------	---------	--

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances						
	Cadmium and cadmium compounds						
Heavy metals	Lead and lead compounds						
	Mercury and mercury compounds						
	Hexavalent chromium compounds						
	Polychlorinated biphenyls (PCB)						
Chloinated	Polychlorinated naphthalenes (PCN)						
organic	Polychlorinated terphenyls (PCT)						
compounds	Short-chain chlorinated paraffins(SCCP)						
	Other chlorinated organic compounds						
Brominated	Polybrominated biphenyls (PBB)						
	Polybrominated diphenylethers(PBDE) (including						
organic	decabromodiphenyl ether[DecaBDE])						
compounds	Other brominated organic compounds						
Tributyltin compounds(TBT)							
Triphenyltin compounds(TPT)							
Asbestos							
Specific azo con	npounds						
Formaldehyde							
Beryllium oxide							
Beryllium copp	Der						
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)						
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)						
Perfluorooctane	sulfonates (PFOS)						
Specific Benzotr	riazole						

Version 01

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
 - Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- Effects of operating temperature on electrical parameters
 At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 At human temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanb increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification. 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure. **2.**Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before inserting. (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.

- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
- If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte of gas is ingested by month, gargie with water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15		Version	01			115	
--------------------	--	---------	----	--	--	-----	--